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Abstract. Machida found in tracking studies [Shinji Machida, presentation at theGBEAWorkshop, Kyoto University
Research Reactor Institute, Osaka, Japan, 5-9 December 2005ithiate of flight in a linear non-scaling FFAG depended
on the transverse amplitude of the particles. | compute a relationship lretiesransverse amplitude dependence of the time
of flight and the variation of tune with energy and explain its physical origin.
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When doing tracking studies for linear non-scaling FFAGscMda [1] found that particles with large enough
transverse amplitude did not get accelerated in a linearsoaling FFAG. He found that this was likely caused by a
dependence of the time of flight in the FFAG on the transvensgitude (Fig. 1).

Itturns out that there is necessarily a relationship betvtlee variation of the time of flight with transverse amplitud
and the variation of the tune with energy. This relationsiaip be straightforwardly computed. First of all, one finds th
closed orbit(xo(s, E), pxo(S.E),Yo(S, E), pyo(s, E)) in the machine without RF as a function of the enelfgyand the
linear map about the closed orbit. One can then make a chdm@se space variables into “normalized” variables,
where the Hamiltonain can be written as

JOYx(s,E)
Js

whereJ, andJy are defined for an uncoupled system as usual as

Jduy(s,E)

H = Ho(s,E) + Jot L=y 4O /%) 1 0(33?), 1)

b= 5 WSER +20(SENBA BSER) Iy =3 (WSEP +20SEWR+BSER) @)

X=X+Xo(s,E) y=Y+Yo(SE) Px = Px+ Pxo(S,E) Py = Py + Pyo(S.E). 3)

Here Byy(S,E), axy(s,E), and k(s E) are the Courant-Snyder functions, aggy(s,E) is the local phase ad-
vance, which is related to the tune for a system with petioly ¢xy(s+L,E) — Yxy(s,E) = 2nv(E). Other
than yxy(s,E), all of the above functions df are periodic ins with period L. Note that the usual scaling of the
Hamiltonian and the transverse momenta by the total momempte= 1/E2/c2 — (mc)2 has occurredr(i is the par-
ticle mass,c is the speed of light). In the more general case with couplonge still transforms the Hamilton-
ain to (1), but now the transformation can be written moreegaity asz = A(s,E)zy, with z= (X, px, Y, py) and
zn = (V23 cosby, —/2]csinby, | /23, cosby, — /2], sinby). As long as the motion is stable at the eneEgyit is al-
ways possible to do this transformation. As part of thisgfarmation, the time of flight was transformed to a new
time of flightty:

4 9%o JA(s,E
t_tN+p%x paprer%y pdEpy+ AT(sE)S%zN. 4)

Note that differs fromty only by a periodic function o$. HereSis the matrix of the symplectic metric,

01 0
0 -1 0 0

S=1o0 0 0 1 ®)
0 0 -1 0

Now, consider the the quantify = t(s+ L) —t(s), the time of flight through one period of the lattice. For hne
oscillations about the energy-dependent closed orbis, ithjustty(s+ L) — tn(S) plus terms that are oscillatory
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FIGURE 1. Relationship between time of flight and transverse amplitude [1]. Thedeigeitates an initial transverse displace-
ment for the corresponding time of flight curves. Results were baségoking and averaging out the oscillatory pieces.

FIGURE 2. Betatron oscillations, showing longer path lengths for larger amplitude dimilta

functions of the angle variabléd and6,. We can computéy (s+L) —tn(s) from Hamilton’s equations of motion:

L oH stL 9Ho(s,E dv dv
tn(S+L) —tn(S) = fp/o “ds= fp/s %dsf 2mp g2k~ 2mp 2y + 0% +03%. (6)
The first term on the right hand side is the time of flight for aigiet along the closed orbit. The next two terms are
the interesting result; they show a relationship betweerithe-of-flight dependence on transverse amplitude and the
tune variation with energy.

What is the physical origin of this behavior? First, think aba straight beam line. For finite transverse oscillations,
the beam makes an angle with the axis (Fig. 2), and thus thelpagth (and therefore the time of flight) along
the particle trajectory increases as the square of the gagtktherefore linearly idyy). The tune decreases with
increasing energy (for large enough energy), while the [eathth increases with increasing transverse amplitude.

What about the result that correcting the chromaticity elees the time of flight variation with amplitude?
Consider a lattice with chromaticity correcting sextugoldssume a lattice with positive dispersion and a phase
advance per cell of less than To make the horizontal chromaticity more positive, thedggat should become more
positive with increasing. This means that the vertical field from the sextupoles shbeala positive parabola in the
midplane. Now, consider horizontal betatron oscillatiahge average field from the sextupole will not be zero, but
will be positive and proportional to the square of the maximarbit displacement (in other words, proportionalth
This additional bending field will tend to reduce the orbiites, decreasing the path length, and therefore decreasing
the time of flight. Similarly, to make the vertical chromdttfcmore positive, the vertical gradient of the horizontal
field should become more negative with increasindg-rom the divergence equation in Maxwell's equations, this
means that the vertical field should be a positive parabojaAmgain, that means that averaging over vertical betatron



oscillations, the average vertical field is positive andpprtional toJy, displacing the beam to a smaller radius as with
the horizontal oscillations.

These physical explanations are not meant to be quanéfdiy. (6) gives the quantitative result. The time of flight
dependence on transverse amplitude can thus be compugghtsrwardly from the tunes for oscillations about the
closed orbit as a function of energy. These tunes are géneedtulated early in the design process for an FFAG, and
so the importance of the time of flight dependence on trassva@mplitude can be quickly computed.

We determined that the transverse amplitude dependenhbe tifie of flight shown in Fig. 1 is correctly predicted

by Eq. (6).
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